Quantitative Methods: The Quest for Causality

David A. Hughes, Ph.D.

Auburn University at Montgomery david.hughes@aum.edu

August 19, 2021

Objectives for today

By the end of this section, students should be able to explain the following:

- The nature of political puzzles and how we use econometric models to attempt to address them, and
- The nature of causality, the factors that threaten valid causal inference, and how to best avoid these pitfalls.

How do we know what we know?

- The world is full of puzzles that cry out for answers.
- We're pretty good at spotting patterns but less talented at ignoring spurious relationships.
- In fact, it's our tendency to over-identify causal relationships that tend to get us into trouble.

An example: Individual annual income

- Suppose we want to learn about how different factors affect individual annual income.
- What are these factors, and what kinds of relationships do we expect them to have upon individual income?
- As a bit of terminology, we call these influential factors "independent variables," and we call the thing they influence the "dependent variables."
- How we measure these variables is referred to as "operationalization."

Association between variables: An economic model

- Suppose we think that education, age, and hours worked per week are the most important factors in determining one's annual income.
- Then we could represent the relationship between dependent and independent variables as:

$$Income = f(education, age, hours), \tag{1}$$

which we read as, "One's annual income is a function of one's level of education, age, and the number of hours one works per week."

• Equation 1 is an example of an economic model.

- Equation 1 is a fine example of an economic model, which one could derive via formal or informal means.
- But Equation 1 is not an econometric model as it does not specify the form of the equation nor the effect of unobserved disturbances.
- For example, how is Equation 1 able to account for something not already in it such as individual productivity?

- We can account for the ambiguities in Equation 1 by specifying an econometric model.
- As all of our variables are measured continuously, it makes sense that the form of our econometric model would be linear.
- As such let the following econometric model represent the linear effect on individual annual income:

Income =
$$\beta_0 + \beta_1$$
education + β_2 age + β_3 hours + u , (2)

where each β represents the (constant) direction and size of effect each independent variable has on the dependent variable, and u represents unexplained variance (elsewhere termed the "disturbance" or "error" term).

A general form for a linear econometric model

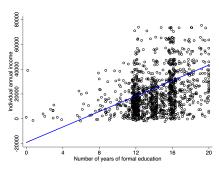
• If we let $Y \in \mathbb{R}$ represent some dependent variable and $\mathbf{X} = \{X_1, X_2, \dots, X_k\}$ some set of independent variables, then we can generalize Equation 2 for any linear relationship:

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \ldots + \beta_k X_{ik} + u_i.$$
 (3)

• Note that the $i \in \{1, 2, \dots, N\}$ subscript is simply an index of observations from the first (1) to last (N) observation.

A simple, bivariate example

- Suppose we just look at the relationship between education and income.
- We find: $Income_i = -7507 +$ $1986(\mathsf{Educ}_i) + u_i$.
- Note: (1) The β s tell us predicted income given education, and (2) The unexplained variance, u_i tells a story about what variables have been omitted.



Source: GSS (2018)

Drawing valid causal inferences

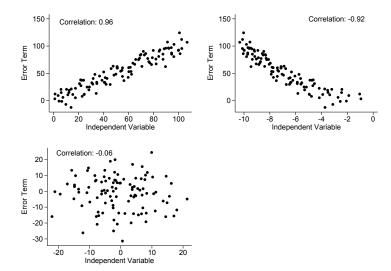
- Generally, we can identify three criteria that, should we fulfill them, allow us to draw a causal inference. In order to conclude that $A \to B$:
 - A must precede B.
 - A must correlate with B.
 - Other factors, C, do not actually account for changes in A and B.
- Two major risks are associated with the third criterion of causality.

Threats to causality: Endogeneity

- If changes in the independent variables are related to changes in the disturbance, u_i , we have an endogeneity problem, which means we have a causal inference problem.
- If variance in the independent variables and u_i are exogenous, we are in a stronger position to draw a causal inference.

Assessing endogeneity

- We'd like to know how related an independent variable is with the error term, ϵ_i .
- We measure correlation on the scale of "-1" to "+1".
- Let's take a look at two endogenous and one exogenous set of relationships...



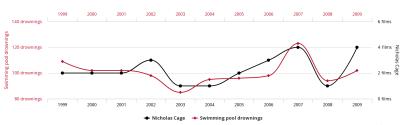
Threats to causality: randomness

- Suppose we have all the exogeneity we could ever need.
- We still must be wary of the truly random and bizarre.
- Put differently, we need a good reason to suspect that changes in Y are due to changes in X. Otherwise the relationship may be spurious.

Random associations

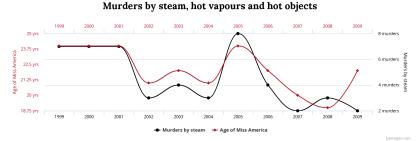
Number of people who drowned by falling into a pool correlates with

Films Nicolas Cage appeared in



Random associations

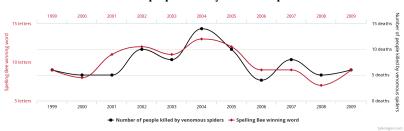
Age of Miss America correlates with



Random associations

Letters in Winning Word of Scripps National Spelling Bee

Number of people killed by venomous spiders



Combating randomness and endogeneity

- What are the best methods we have at our disposal to combat the truly random or endogenous?
- ullet The first is to have a sound theoretical reason for expecting Ato cause B in the first place.
- The second is to have a rigorously tailored research design that uses the best practices of sampling and experimentation to arrive at sound conclusions.
- When experimental methods are not available, then our next best approach is to mimic these methods using econometric models—the subject nature of this course.

Conclusion

Today we learned a few critical things:

- We'd like to be able to make strong causal inferences.
- We can use the best practices of research design and econometric modeling to aid us in doing so.
- Even so, we must be mindful of the critical role that theory plays in helping to guide our expectations.