Intro Basics Cox Model Parametric Models
000 00000 0000000000 0000000000

Event History/Survival /Duration/Hazards Models

David A. Hughes, Ph.D.

Auburn University at Montgomery

david.hughes@aum.edu

April 3, 2020

1/30



Intro Basics Cox Model Parametric Models
000 00000 0000000000 0000000000

Overview

@ Intro

@ Basics

© Cox Model

@ Parametric Models

2/30



Intro Basics Cox Model Parametric Models
000

Survival /Duration /Event History Data

e QObservations represent the occurrence of a particular event
over a period of time

® Fundamental goal of analysis is to determine survival time
or‘how long’ it takes for some event to occur

® [nitial analysis of duration data involved fitting OLS regression
lines to data
® Underlying theory is that time is continuous
® Problem is that some events have not occurred at end of
observation (i.e. censored)
® How does one model censoring?
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Example of Duration Data: When to Retire

T T T T
10 15 20 25 30

Years of Employment

35

Parametric Models
0000000000

4/30



Intro Basics Cox Model Parametric

Models
ocoe

Solutions for Censored Data

® Treat censored observation as equivalent to last observed data
point
® Eliminate censored observation(s)
® This solution only works if the factors which contribute to the
censoring (i.e. extended life beyond the sample) are unrelated
to the factors promoting an event’s occurrence
® |f factors are related, than elimination of censored observations
leads to biased estimates

® Create a binary indicator variable (coded ‘1’ if event occurs
and ‘0’ otherwise)

® Problem is that the dummy variable cannot capture the
variation in duration time, which is precisely what we try to
model

® New indicator variable does not bias estimates, but leads to
inefficiency in the model
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Logic of Survival/Duration/Event History Models

¢ Underlying premise is that the survival/duration/
time-until-event of some process is modeled

® Technique originated from biostatistics to predict how long an
individual will live after given specific medical treatments

® Qverall approach involves modeling three related concepts
1. Survivor function
2. Occurrence of an event
3. Hazard rate
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Survival Data Basics

Suppose we're modeling the life-span of patients in a hospital.
Each patient, 4, is observed across periods of time, ¢, where
the length of their survival is denoted 7.

We might want to model the probability that a patient expires
on or before a given period of time, ¢.

Denote this cumulative probability as:

Pr(T; <t)=F(t) = /t f(t)dt.
0

F(t) is the probability of death on or before t.

Conversely, we can get the probability of survival to ¢ as:

Pr(T; >t)=S(t)=1-F(t).
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Hazard Rates

e \We'd like to know the probability of observing an event at ¢,
provided that we haven't observed it already:
Pr(T; =t| T; > t).

® This figure is known as the "hazard” and is denoted as h(t).

® The hazard can be expressed as a proportion of f(t) (the
probability density of f at some ¢) and S(t) (the cumulative
probability of survival to some t):

=10
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Assumptions about the Hazard Rate

® Assumptions most often based on the rate's dependency, or
relationship, to time

® |s the rate constant?
® Does it increase or decrease?

® |f rate is constant (i.e. time invariant)

® \We can estimate it using an exponential distribution

® The hazard rate at any given time point is equal to the hazard
rate at any other point in time: h(t) = h

® Graphical depiction produces a flat line
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Assumptions about the Hazard Rate

® |f rate is time dependent

® Need to determine whether event is affected by discrete time
(i.e. finite categories) or continuous time

® Discrete Time

® Goal of these models is to use the statistical model to derive
estimates of the underlying hazard probability of a unit
experiencing an event

® Whether or not event is experienced is determined by the
observed dependent variable

® Since an event can occur only at discrete time intervals, we
can assume that the probability of event T" occurring at time ¢
is also observable
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Modeling Discrete Time

® \t)=Pr(T =tT >1t)
® Where \(t) = the discrete time hazard function

® \(t) can be interpreted as the probability that a unit
experiences an event at time ¢, given the event has yet to be
experienced

11/30



Intro Basics Cox Model
0®00000000

Models

Modeling Discrete Time

® Most analysts want to know how specific independent
variables affect the hazard rate
* \t)=Pr(T =ttt > t;a, X3)
® where « represents a baseline probability (when covariates
equal zero) and X 3 represents matrix of independent variables
and their parameters
® Cox (1972) demonstrates that the A probabilities can be
parameterized through the logistic distribution

1
G p—rs
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Modeling Discrete Time

e Estimating this equation requires a logistic transformation

At)
lnm—a+Xﬁ

® This model can be estimated with a variation of the logit
model, called the proportional hazards model
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Cox Proportional Hazards Model

® | ogic behind the proportional hazards model
__ probability of failing between times ¢ and ¢ + At

At) =
®) (At)(probability of failing after time ¢)

® Note: the data MUST be stset in Stata (using the stset
command) to designate that observations are based on
‘survival time’

® Syntax for the command is: stset [timevar [if] [,
id(idvar), failure(failvar[==numlist])]
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stset Example: Judicial Retirements

stset years_on_court,

id:

failure event:

obs. time interval:
exit on or before:

id(jcode) failure(voluntary==1)

jcode

voluntary ==

(years_on_court[_n-1], years_on_court]
failure

3601 total ob
72 observat

servations
ions end on or before enter()

3529 observat
388 subjects
144 failures

ions remaining, representing

in single-failure-per-subject data

7250 total analysis time at risk and under observation

at risk from t = 0
earliest observed entry t = 0
last observed exit t = 60
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Cox Proportional Hazards Model

® Stata syntax for estimating Cox Model:
® stcox [varlist] [if] [in] [, options]

. stcox vested ideoagree minority sex if appointed==

Cox regression -- Breslow method for ties
No. of subjects = 146 Number of obs = 1,532
No. of failures = 63
Time at risk = 3058
LR chi2(4) = 31.49
Log likelihood = -222.84145 Prob > chi2 = 0.0000
_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Intervall
vested | 11.32882  6.900349 3.99  0.000 3.433368 37.38083
ideoagree | 1.195356 .3236574 0.66 0.510 .7031108 2.032219
minority | .8834718 .6404115 -0.17  0.864 .2133896 3.657734
sex | .5658492 .4108675 -0.78  0.433 .1363442 2.34836

Parametric Models
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Interpreting Hazards Ratios

® Hazard ratios equal to one indicate that in the presence of a
covariate, the hazard of a failure is no more or less than in the
absence of a covariate.

® Hazard ratios greater than one indicate an increasing hazard
of failure, while rates less than one indicate a decreasing
hazard of failure.

® For example, with a hazard ratio of 11.33 on the variable,
“vested,” we learn that the hazard of a voluntary retirement
for a judge who has vested in her pension is over 11 times
greater than a similarly situated judge who has not vested, all
else equal.
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Cox Proportional Hazards Model: Postestimation

® Post-estimation graphing commands
® Basic syntax: stcurve, hazard or stcurve, survival

® Alternatively: stcurve, hazard atl(varname=value)
at2(varname=value)
or stcurve, survival atl(varname=value)
at2(varname=value)
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stcurve Example

Cox proportional hazards regression

T T T
0 10 20 30 40
analysis time

vested=0

vested=1
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Cox Model Assumptions

1. Non-Informative Censoring — mechanisms responsible for
censoring observations unrelated to the likelihood of an event
occurring

2. Proportional Hazards Assumption — if an explanatory variable
is altered the new hazard rate will be proportional to the old
one

® This is easy to test for in Stata. Use the command estat
phtest post estimation.
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Exponential and Weibull Models

® Limitation of the Cox regression
® Estimates baseline survival function without a theoretical
justification for the statistical distribution
® Offers no assumptions about the relation of the hazard rate to
time
® Exponential Models
® Assumes that the hazard rate remains constant
® Therefore, ‘failures’ assumed to occur randomly
® Weibull Regressions

® Assumes that the hazard rate either increases or decreases over
time
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Exponential and Weibull Models

® How do we know which model to use?
® Need to examine and identify trends in the baseline hazard

o Kaplan-Meier survival estimate graph
® Based on following equation

S(t) = H (”jn_jdj)

® Where n; = # of observations that have not failed and are
not censored, and d; = # failures occurring at time ¢
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® |imitations of Kaplan-Meier graphs
® Unadjusted graphs are somewhat misleading because the
hazard rate will always fluctuate over time
® To correct for this, we graph the natural log of survival time
In S(t) versus time
® If line appears relatively straight, then the Exponential Model
is more appropriate
® Stata syntax for Kaplan-Meier log versus time graph:
® sts gen S = S
® gen logS = 1n(S)
® graph twoway scatter logS timevar
® Note: timevar above is the variable that you stset your data
by
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Exponential and Weibull Models

One last adjustment needed to be confident that the Weibull
model is not more appropriate

Weibull distribution might appear curvilinear in the log versus
time plot, but will be linear in a loglog plot In[—In S(?)]

Exponential distribution will appear linear in both plots, and
have a slope equal to 1 in the loglog plot
Stata syntax for loglog plot:

® gen loglogS = 1n(-1n(8))

® gen logtime = ln(timevar)

® Note: timevar above is the variable that you stset your data
by
® graph twoway scatter loglogS logtime
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Exponential and Weibull Models

e Estimation of Exponential or Weibull Models
® Stata syntax:

® streg [varlist] [if] [in] [, options]
® Key option:
® distribution(weibull) when estimating Weibull model
® distribution(exponential) when estimating Exponential
model
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Exponential Model Example

. streg vested ideoagree minority if appointed==1, distribution(weibull)
Weibull regression -- log relative-hazard form
No. of subjects = 145 Number of obs = 1,492
No. of failures = 59
Time at risk = 2973
LR chi2(3) = 26.19
Log likelihood = -64.170637 Prob > chi2 = 0.0000
_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Intervall
vested | 10.18912  6.242528 3.79  0.000 3.066436 33.85626
ideoagree | 1.384442 .3791402 1.19 0.235 .8094061 2.368006
minority | .8282316 .5984289 -0.26 0.794 .2009677 3.413323
_cons | .0000564 .0000575 -9.60  0.000 7.65e-06 .000416
/in_p | .7615059 .1262756 6.03  0.000 .5140102 1.009002
pl 2.141499 .2704191 1.671983 2.742861
1/p | 4669627 .058966 3645828 .5980923

Parametric Models
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Weibull Model Example

® Note: the p parameter in the Weibull provides information
about the hazard rate

® |If p = 1 then Weibull equals Exponential
® If p > 1 then hazard increases over time if p < 1 then hazard
decreases
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Comparing Models

® Cox Proportional Hazards Model

® Fewer parameters to estimate
® Easier, more parsimonious model
® |f hazard rate is related to time, this model produces biased

estimates
® Exponential or Weibull Model

® More parameters to estimate
® Models more susceptible to specification error
® |f hazard rate is not related to time, these models produce

biased estimates
e Kaplan-Meier Graphs
® Probably the best way to determine proper specification
(unless there is a theoretical reason)
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