

Event History/Survival/Duration/Hazards Models

David A. Hughes, Ph.D.

Auburn University at Montgomery

david.hughes@aum.edu

April 3, 2020

Overview

1 Intro

2 Basics

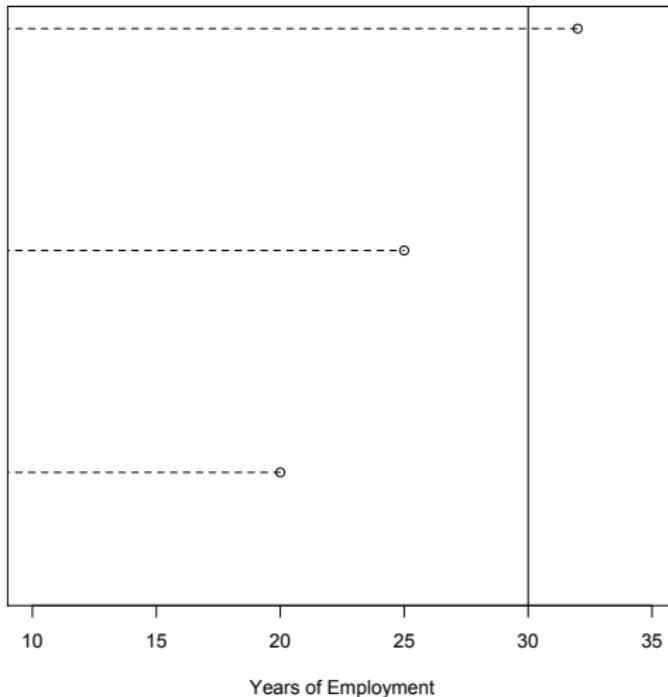
3 Cox Model

4 Parametric Models

Survival/Duration/Event History Data

- Observations represent the occurrence of a particular event over a period of time
- Fundamental goal of analysis is to determine survival time or 'how long' it takes for some event to occur
- Initial analysis of duration data involved fitting OLS regression lines to data
 - Underlying theory is that time is continuous
 - Problem is that some events have not occurred at end of observation (i.e. censored)
 - How does one model censoring?

Example of Duration Data: When to Retire



Solutions for Censored Data

- Treat censored observation as equivalent to last observed data point
- Eliminate censored observation(s)
 - This solution only works if the factors which contribute to the censoring (i.e. extended life beyond the sample) are unrelated to the factors promoting an event's occurrence
 - If factors are related, than elimination of censored observations leads to biased estimates
- Create a binary indicator variable (coded '1' if event occurs and '0' otherwise)
 - Problem is that the dummy variable cannot capture the variation in duration time, which is precisely what we try to model
 - New indicator variable does not bias estimates, but leads to inefficiency in the model

Logic of Survival/Duration/Event History Models

- Underlying premise is that the survival/duration/time-until-event of some process is modeled
- Technique originated from biostatistics to predict how long an individual will live after given specific medical treatments
- Overall approach involves modeling three related concepts
 1. Survivor function
 2. Occurrence of an event
 3. Hazard rate

Survival Data Basics

- Suppose we're modeling the life-span of patients in a hospital. Each patient, i , is observed across periods of time, t , where the length of their survival is denoted T_i .
- We might want to model the probability that a patient expires on or before a given period of time, t .
- Denote this cumulative probability as:

$$Pr(T_i \leq t) \equiv F(t) = \int_0^t f(t)dt.$$

- $F(t)$ is the probability of death on or before t .
- Conversely, we can get the probability of survival to t as:

$$Pr(T_i \geq t) \equiv S(t) = 1 - F(t).$$

Hazard Rates

- We'd like to know the probability of observing an event at t , provided that we haven't observed it already:
 $Pr(T_i = t | T_i \geq t)$.
- This figure is known as the “hazard” and is denoted as $h(t)$.
- The hazard can be expressed as a proportion of $f(t)$ (the probability density of f at some t) and $S(t)$ (the cumulative probability of survival to some t):

$$h(t) = \frac{f(t)}{S(t)}.$$

Assumptions about the Hazard Rate

- Assumptions most often based on the rate's dependency, or relationship, to time
 - Is the rate constant?
 - Does it increase or decrease?
- If rate is constant (i.e. time invariant)
 - We can estimate it using an exponential distribution
 - The hazard rate at any given time point is equal to the hazard rate at any other point in time: $h(t) = h$
 - Graphical depiction produces a flat line

Assumptions about the Hazard Rate

- If rate is time dependent
 - Need to determine whether event is affected by discrete time (i.e. finite categories) or continuous time
- Discrete Time
 - Goal of these models is to use the statistical model to derive estimates of the underlying hazard probability of a unit experiencing an event
 - Whether or not event is experienced is determined by the observed dependent variable
 - Since an event can occur only at discrete time intervals, we can assume that the probability of event T occurring at time t is also observable

Modeling Discrete Time

- $\lambda(t) = Pr(T = t | T \geq t)$
- Where $\lambda(t)$ = the discrete time hazard function
- $\lambda(t)$ can be interpreted as the probability that a unit experiences an event at time t , given the event has yet to be experienced

Modeling Discrete Time

- Most analysts want to know how specific independent variables affect the hazard rate
- $\lambda(t) = \Pr(T = t|t \geq t; \alpha, \mathbf{X}\beta)$
 - where α represents a baseline probability (when covariates equal zero) and $\mathbf{X}\beta$ represents matrix of independent variables and their parameters
- Cox (1972) demonstrates that the λ probabilities can be parameterized through the logistic distribution

$$\lambda(t) = \frac{1}{1 + \exp^{-[\alpha + \mathbf{X}\beta]}}$$

Modeling Discrete Time

- Estimating this equation requires a logistic transformation

$$\ln \frac{\lambda(t)}{1 - \lambda(t)} = \alpha + \mathbf{X}\boldsymbol{\beta}$$

- This model can be estimated with a variation of the logit model, called the proportional hazards model

Cox Proportional Hazards Model

- Logic behind the proportional hazards model

$$\lambda(t) = \frac{\text{probability of failing between times } t \text{ and } t + \Delta t}{(\Delta t)(\text{probability of failing after time } t)}$$

- Note: the data MUST be stset in Stata (using the `stset` command) to designate that observations are based on 'survival time'
- Syntax for the command is: `stset [timevar [if] [, id(idvar), failure(failvar[==numlist])]`

stset Example: Judicial Retirements

```
stset years_on_court, id(jcode) failure(voluntary==1)

    id: jcode
    failure event: voluntary == 1
obs. time interval: (years_on_court[_n-1], years_on_court]
exit on or before: failure

-----
3601 total observations
    72 observations end on or before enter()

-----
3529 observations remaining, representing
    388 subjects
    144 failures in single-failure-per-subject data
    7250 total analysis time at risk and under observation
                    at risk from t =      0
                    earliest observed entry t =      0
                    last observed exit t =      60
```

Cox Proportional Hazards Model

- Stata syntax for estimating Cox Model:
- `stcox [varlist] [if] [in] [, options]`

```
. stcox vested ideoagree minority sex if appointed==1
```

Cox regression -- Breslow method for ties

```
No. of subjects = 146 Number of obs = 1,532
No. of failures = 63
Time at risk = 3058
LR chi2(4) = 31.49
Prob > chi2 = 0.0000
```

_t	Haz. Ratio	Std. Err.	z	P> z	[95% Conf. Interval]
<hr/>					
vested	11.32882	6.900349	3.99	0.000	3.433368 37.38083
ideoagree	1.195356	.3236574	0.66	0.510	.7031108 2.032219
minority	.8834718	.6404115	-0.17	0.864	.2133896 3.657734
sex	.5658492	.4108675	-0.78	0.433	.1363442 2.34836

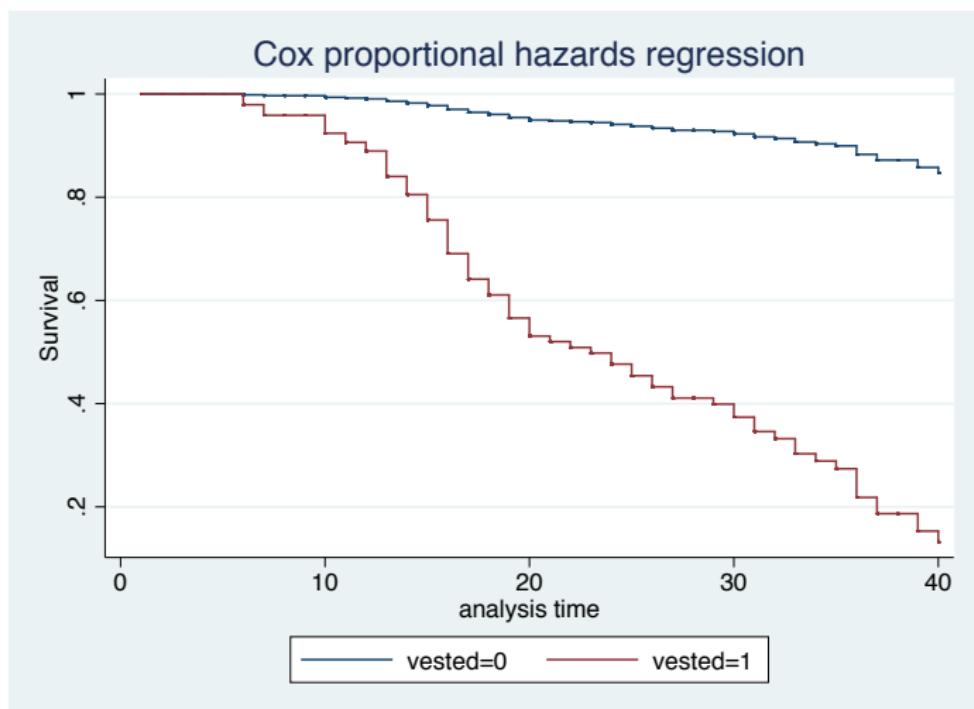
Interpreting Hazards Ratios

- Hazard ratios equal to one indicate that in the presence of a covariate, the hazard of a failure is no more or less than in the absence of a covariate.
- Hazard ratios greater than one indicate an increasing hazard of failure, while rates less than one indicate a decreasing hazard of failure.
- For example, with a hazard ratio of 11.33 on the variable, “vested,” we learn that the hazard of a voluntary retirement for a judge who has vested in her pension is over 11 times greater than a similarly situated judge who has not vested, all else equal.

Cox Proportional Hazards Model: Postestimation

- Post-estimation graphing commands
- Basic syntax: `stcurve, hazard` or `stcurve, survival`
- Alternatively: `stcurve, hazard at1(varname=value)`
`at2(varname=value)`
or `stcurve, survival at1(varname=value)`
`at2(varname=value)`

stcurve Example



Cox Model Assumptions

1. Non-Informative Censoring — mechanisms responsible for censoring observations unrelated to the likelihood of an event occurring
2. Proportional Hazards Assumption — if an explanatory variable is altered the new hazard rate will be proportional to the old one
 - This is easy to test for in Stata. Use the command `estat phtest` post estimation.

Exponential and Weibull Models

- Limitation of the Cox regression
 - Estimates baseline survival function without a theoretical justification for the statistical distribution
 - Offers no assumptions about the relation of the hazard rate to time
- Exponential Models
 - Assumes that the hazard rate remains constant
 - Therefore, 'failures' assumed to occur randomly
- Weibull Regressions
 - Assumes that the hazard rate either increases or decreases over time

Exponential and Weibull Models

- How do we know which model to use?
 - Need to examine and identify trends in the baseline hazard
- Kaplan-Meier survival estimate graph
 - Based on following equation

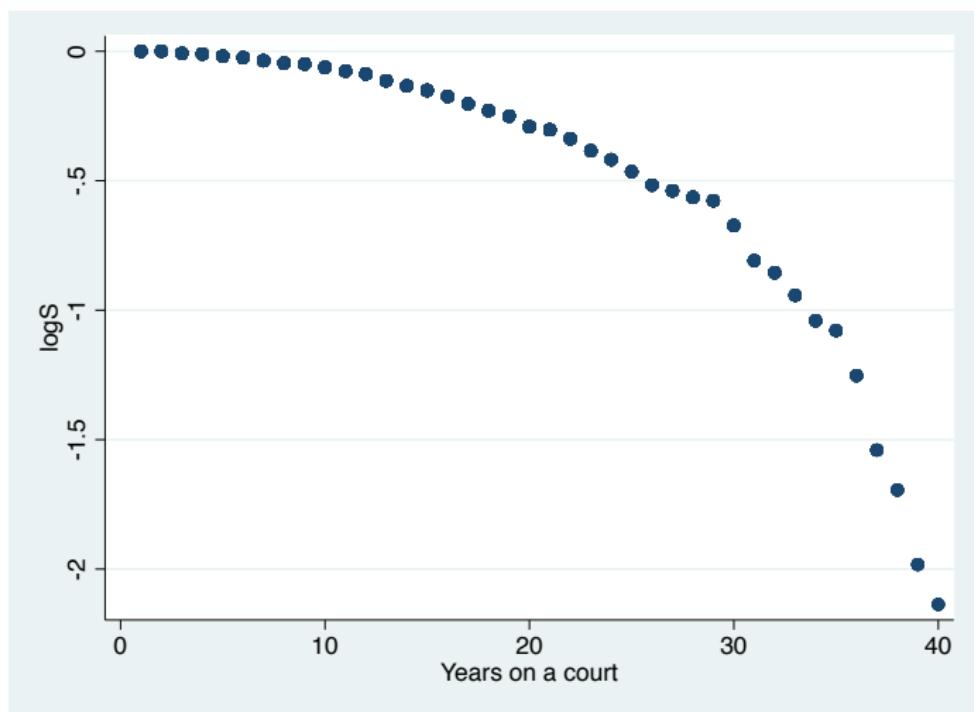
$$S(t) = \prod_{j=t_0}^t \frac{(n_j - d_j)}{n_j}$$

- Where $n_j = \#$ of observations that have not failed and are not censored, and $d_j = \#$ failures occurring at time t

Exponential and Weibull Models

- Limitations of Kaplan-Meier graphs
 - Unadjusted graphs are somewhat misleading because the hazard rate will always fluctuate over time
 - To correct for this, we graph the natural log of survival time $\ln S(t)$ versus time
 - If line appears relatively straight, then the Exponential Model is more appropriate
- Stata syntax for Kaplan-Meier log versus time graph:
 - `sts gen S = S`
 - `gen logS = ln(S)`
 - `graph twoway scatter logS timevar`
 - Note: `timevar` above is the variable that you `stset` your data by

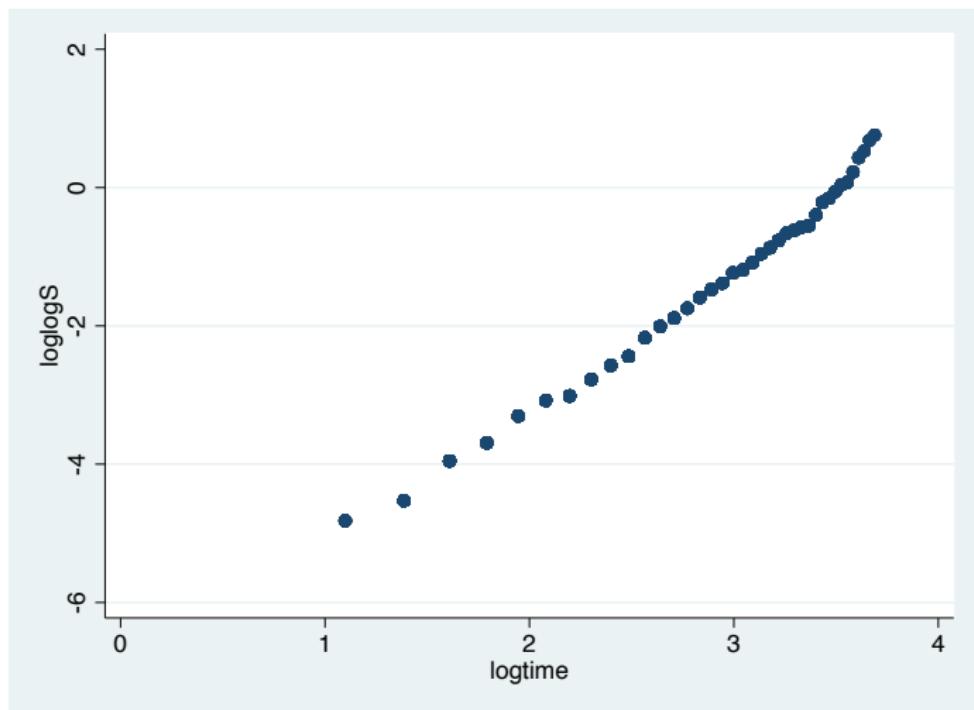
Log Versus Time Example



Exponential and Weibull Models

- One last adjustment needed to be confident that the Weibull model is not more appropriate
- Weibull distribution might appear curvilinear in the log versus time plot, but will be linear in a loglog plot $\ln[-\ln S(t)]$
- Exponential distribution will appear linear in both plots, and have a slope equal to 1 in the loglog plot
- Stata syntax for loglog plot:
 - `gen loglogS = ln(-ln(S))`
 - `gen logtime = ln(timevar)`
 - Note: `timevar` above is the variable that you `stset` your data by
 - `graph twoway scatter loglogS logtime`

Log-Log Example



Exponential and Weibull Models

- Estimation of Exponential or Weibull Models
- Stata syntax:
 - `streg [varlist] [if] [in] [, options]`
 - Key option:
 - `distribution(weibull)` when estimating Weibull model
 - `distribution(exponential)` when estimating Exponential model

Exponential Model Example

```
. streg vested ideoagree minority if appointed==1, distribution(weibull)
```

Weibull regression -- log relative-hazard form

No. of subjects =	145	Number of obs =	1,492
No. of failures =	59		
Time at risk =	2973	LR chi2(3) =	26.19
Log likelihood =	-64.170637	Prob > chi2 =	0.0000

_t	Haz. Ratio	Std. Err.	z	P> z	[95% Conf. Interval]
<hr/>					
vested	10.18912	6.242528	3.79	0.000	3.066436 33.85626
ideoagree	1.384442	.3791402	1.19	0.235	.8094061 2.368006
minority	.8282316	.5984289	-0.26	0.794	.2009677 3.413323
_cons	.0000564	.0000575	-9.60	0.000	7.65e-06 .000416
<hr/>					
/ln_p	.7615059	.1262756	6.03	0.000	.5140102 1.009002
<hr/>					
p	2.141499	.2704191			1.671983 2.742861
1/p	.4669627	.058966			.3645828 .5980923
<hr/>					

Weibull Model Example

- Note: the ρ parameter in the Weibull provides information about the hazard rate
 - If $\rho = 1$ then Weibull equals Exponential
 - If $\rho > 1$ then hazard increases over time if $\rho < 1$ then hazard decreases

Comparing Models

- Cox Proportional Hazards Model
 - Fewer parameters to estimate
 - Easier, more parsimonious model
 - If hazard rate is related to time, this model produces biased estimates
- Exponential or Weibull Model
 - More parameters to estimate
 - Models more susceptible to specification error
 - If hazard rate is not related to time, these models produce biased estimates
- Kaplan-Meier Graphs
 - Probably the best way to determine proper specification (unless there is a theoretical reason)