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Survival/Duration/Event History Data

• Observations represent the occurrence of a particular event
over a period of time

• Fundamental goal of analysis is to determine survival time
or‘how long’ it takes for some event to occur

• Initial analysis of duration data involved fitting OLS regression
lines to data
• Underlying theory is that time is continuous
• Problem is that some events have not occurred at end of

observation (i.e. censored)
• How does one model censoring?
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Example of Duration Data: When to Retire

10 15 20 25 30 35

Years of Employment
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Solutions for Censored Data

• Treat censored observation as equivalent to last observed data
point

• Eliminate censored observation(s)
• This solution only works if the factors which contribute to the

censoring (i.e. extended life beyond the sample) are unrelated
to the factors promoting an event’s occurrence

• If factors are related, than elimination of censored observations
leads to biased estimates

• Create a binary indicator variable (coded ‘1’ if event occurs
and ‘0’ otherwise)
• Problem is that the dummy variable cannot capture the

variation in duration time, which is precisely what we try to
model

• New indicator variable does not bias estimates, but leads to
inefficiency in the model

5 / 30



Intro Basics Cox Model Parametric Models

Logic of Survival/Duration/Event History Models

• Underlying premise is that the survival/duration/
time-until-event of some process is modeled

• Technique originated from biostatistics to predict how long an
individual will live after given specific medical treatments

• Overall approach involves modeling three related concepts

1. Survivor function
2. Occurrence of an event
3. Hazard rate
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Survival Data Basics

• Suppose we’re modeling the life-span of patients in a hospital.
Each patient, i, is observed across periods of time, t, where
the length of their survival is denoted Ti.

• We might want to model the probability that a patient expires
on or before a given period of time, t.

• Denote this cumulative probability as:

Pr(Ti ≤ t) ≡ F (t) =

∫ t

0
f(t)dt.

• F (t) is the probability of death on or before t.

• Conversely, we can get the probability of survival to t as:

Pr(Ti ≥ t) ≡ S(t) = 1− F (t).
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Hazard Rates

• We’d like to know the probability of observing an event at t,
provided that we haven’t observed it already:
Pr(Ti = t | Ti ≥ t).

• This figure is known as the “hazard” and is denoted as h(t).

• The hazard can be expressed as a proportion of f(t) (the
probability density of f at some t) and S(t) (the cumulative
probability of survival to some t):

h(t) =
f(t)

S(t)
.
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Assumptions about the Hazard Rate

• Assumptions most often based on the rate’s dependency, or
relationship, to time
• Is the rate constant?
• Does it increase or decrease?

• If rate is constant (i.e. time invariant)
• We can estimate it using an exponential distribution
• The hazard rate at any given time point is equal to the hazard

rate at any other point in time: h(t) = h
• Graphical depiction produces a flat line
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Assumptions about the Hazard Rate

• If rate is time dependent
• Need to determine whether event is affected by discrete time

(i.e. finite categories) or continuous time

• Discrete Time
• Goal of these models is to use the statistical model to derive

estimates of the underlying hazard probability of a unit
experiencing an event

• Whether or not event is experienced is determined by the
observed dependent variable

• Since an event can occur only at discrete time intervals, we
can assume that the probability of event T occurring at time t
is also observable
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Modeling Discrete Time

• λ(t) = Pr(T = t|T ≥ t)
• Where λ(t) = the discrete time hazard function

• λ(t) can be interpreted as the probability that a unit
experiences an event at time t, given the event has yet to be
experienced
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Modeling Discrete Time

• Most analysts want to know how specific independent
variables affect the hazard rate
• λ(t) = Pr(T = t|t ≥ t;α,Xβ)

• where α represents a baseline probability (when covariates
equal zero) and Xβ represents matrix of independent variables
and their parameters

• Cox (1972) demonstrates that the λ probabilities can be
parameterized through the logistic distribution

λ(t) =
1

1 + exp−[α+Xβ]
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Modeling Discrete Time

• Estimating this equation requires a logistic transformation

ln
λ(t)

1− λ(t)
= α+Xβ

• This model can be estimated with a variation of the logit
model, called the proportional hazards model
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Cox Proportional Hazards Model

• Logic behind the proportional hazards model

λ(t) =
probability of failing between times t and t+ ∆t

(∆t)(probability of failing after time t)

• Note: the data MUST be stset in Stata (using the stset

command) to designate that observations are based on
‘survival time’

• Syntax for the command is: stset [timevar [if] [,

id(idvar), failure(failvar[==numlist])]
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stset Example: Judicial Retirements

stset years_on_court, id(jcode) failure(voluntary==1)

id: jcode

failure event: voluntary == 1

obs. time interval: (years_on_court[_n-1], years_on_court]

exit on or before: failure

------------------------------------------------------------------------------

3601 total observations

72 observations end on or before enter()

------------------------------------------------------------------------------

3529 observations remaining, representing

388 subjects

144 failures in single-failure-per-subject data

7250 total analysis time at risk and under observation

at risk from t = 0

earliest observed entry t = 0

last observed exit t = 60
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Cox Proportional Hazards Model

• Stata syntax for estimating Cox Model:

• stcox [varlist] [if] [in] [, options]

. stcox vested ideoagree minority sex if appointed==1

Cox regression -- Breslow method for ties

No. of subjects = 146 Number of obs = 1,532

No. of failures = 63

Time at risk = 3058

LR chi2(4) = 31.49

Log likelihood = -222.84145 Prob > chi2 = 0.0000

------------------------------------------------------------------------------

_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

vested | 11.32882 6.900349 3.99 0.000 3.433368 37.38083

ideoagree | 1.195356 .3236574 0.66 0.510 .7031108 2.032219

minority | .8834718 .6404115 -0.17 0.864 .2133896 3.657734

sex | .5658492 .4108675 -0.78 0.433 .1363442 2.34836

------------------------------------------------------------------------------
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Interpreting Hazards Ratios

• Hazard ratios equal to one indicate that in the presence of a
covariate, the hazard of a failure is no more or less than in the
absence of a covariate.

• Hazard ratios greater than one indicate an increasing hazard
of failure, while rates less than one indicate a decreasing
hazard of failure.

• For example, with a hazard ratio of 11.33 on the variable,
“vested,” we learn that the hazard of a voluntary retirement
for a judge who has vested in her pension is over 11 times
greater than a similarly situated judge who has not vested, all
else equal.
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Cox Proportional Hazards Model: Postestimation

• Post-estimation graphing commands

• Basic syntax: stcurve, hazard or stcurve, survival

• Alternatively: stcurve, hazard at1(varname=value)

at2(varname=value)

or stcurve, survival at1(varname=value)

at2(varname=value)
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stcurve Example
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Cox proportional hazards regression
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Cox Model Assumptions

1. Non-Informative Censoring — mechanisms responsible for
censoring observations unrelated to the likelihood of an event
occurring

2. Proportional Hazards Assumption — if an explanatory variable
is altered the new hazard rate will be proportional to the old
one
• This is easy to test for in Stata. Use the command estat

phtest post estimation.
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Exponential and Weibull Models

• Limitation of the Cox regression
• Estimates baseline survival function without a theoretical

justification for the statistical distribution
• Offers no assumptions about the relation of the hazard rate to

time

• Exponential Models
• Assumes that the hazard rate remains constant
• Therefore, ‘failures’ assumed to occur randomly

• Weibull Regressions
• Assumes that the hazard rate either increases or decreases over

time
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Exponential and Weibull Models

• How do we know which model to use?
• Need to examine and identify trends in the baseline hazard

• Kaplan-Meier survival estimate graph
• Based on following equation

S(t) =

t∏
j=t0

(nj − dj)
nj

• Where nj = # of observations that have not failed and are
not censored, and dj = # failures occurring at time t
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Exponential and Weibull Models

• Limitations of Kaplan-Meier graphs
• Unadjusted graphs are somewhat misleading because the

hazard rate will always fluctuate over time
• To correct for this, we graph the natural log of survival time

lnS(t) versus time
• If line appears relatively straight, then the Exponential Model

is more appropriate

• Stata syntax for Kaplan-Meier log versus time graph:
• sts gen S = S
• gen logS = ln(S)
• graph twoway scatter logS timevar

• Note: timevar above is the variable that you stset your data
by
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Log Versus Time Example
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Exponential and Weibull Models

• One last adjustment needed to be confident that the Weibull
model is not more appropriate

• Weibull distribution might appear curvilinear in the log versus
time plot, but will be linear in a loglog plot ln[− lnS(t)]

• Exponential distribution will appear linear in both plots, and
have a slope equal to 1 in the loglog plot
• Stata syntax for loglog plot:

• gen loglogS = ln(-ln(S))
• gen logtime = ln(timevar)

• Note: timevar above is the variable that you stset your data
by

• graph twoway scatter loglogS logtime
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Log-Log Example
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Exponential and Weibull Models

• Estimation of Exponential or Weibull Models
• Stata syntax:

• streg [varlist] [if] [in] [, options]
• Key option:

• distribution(weibull) when estimating Weibull model
• distribution(exponential) when estimating Exponential

model
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Exponential Model Example

. streg vested ideoagree minority if appointed==1, distribution(weibull)

Weibull regression -- log relative-hazard form

No. of subjects = 145 Number of obs = 1,492

No. of failures = 59

Time at risk = 2973

LR chi2(3) = 26.19

Log likelihood = -64.170637 Prob > chi2 = 0.0000

------------------------------------------------------------------------------

_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

vested | 10.18912 6.242528 3.79 0.000 3.066436 33.85626

ideoagree | 1.384442 .3791402 1.19 0.235 .8094061 2.368006

minority | .8282316 .5984289 -0.26 0.794 .2009677 3.413323

_cons | .0000564 .0000575 -9.60 0.000 7.65e-06 .000416

-------------+----------------------------------------------------------------

/ln_p | .7615059 .1262756 6.03 0.000 .5140102 1.009002

-------------+----------------------------------------------------------------

p | 2.141499 .2704191 1.671983 2.742861

1/p | .4669627 .058966 .3645828 .5980923

------------------------------------------------------------------------------
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Weibull Model Example

• Note: the ρ parameter in the Weibull provides information
about the hazard rate
• If ρ = 1 then Weibull equals Exponential
• If ρ > 1 then hazard increases over time if ρ < 1 then hazard

decreases
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Comparing Models

• Cox Proportional Hazards Model
• Fewer parameters to estimate
• Easier, more parsimonious model
• If hazard rate is related to time, this model produces biased

estimates

• Exponential or Weibull Model
• More parameters to estimate
• Models more susceptible to specification error
• If hazard rate is not related to time, these models produce

biased estimates

• Kaplan-Meier Graphs
• Probably the best way to determine proper specification

(unless there is a theoretical reason)
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