
Introduction The binary response model Interpretation Estimation Conclusion

Binary Logit and Probit

David A. Hughes, Ph.D.

Auburn University at Montgomery

david.hughes@aum.edu

February 7, 2020

1 / 36



Introduction The binary response model Interpretation Estimation Conclusion

Overview

1 Introduction

2 The binary response model

3 Interpretation

4 Estimation

5 Conclusion

2 / 36



Introduction The binary response model Interpretation Estimation Conclusion

Introduction

By the time students finish this unit, they should be able to
explain:

• The binary response model from a latent model perspective,

• The logic underlying logit and probit,

• How to interpret logit and probit results, and

• How to estimate and present these effects.
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Review

• Suppose our dependent variable is measured such that
Yi ∈ {0, 1}.
• Recall that the linear probability model violates a number of

desirable assumptions of OLS.

• We’d like instead to model the actual probability of observing
either a “0” or “1.”
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A latent variable approach

• Suppose there exists an underlying measure of Yi that is
measured on a continuous scale. Call this latent variable Y ∗i .
The underlying model is therefore,

Y ∗i = Xiβ + εi, (1)

where ε is distributed according to some normal distribution.

• We do not observe Y ∗i directly but merely its manifestations
in Yi such that:

Yi = 0 if Y ∗i < 0

Yi = 1 if Y ∗i ≥ 0.
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A latent approach (cont’d.)

• Taking Equation (1), we can model the probability of
observing Yi = 1:

Pr(Yi = 1) = Pr(Y ∗i ≥ 0)

Pr(Xiβ + εi ≥ 0)

Pr(εi ≥ −Xiβ)

Pr(εi ≤ Xiβ), (2)

where the last inequality holds due to the symmetry of the
distribution of ε.

• Because ε is assumed normally distributed, we can integrate
over it to find β̂.
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Logit

• If we assume that ε is distributed according to a logistic
probability density function, we get the logit model:

Pr(ε) ≡ λ(ε) =
exp(ε)

[1 + exp(ε)]2
. (3)

Equation (3) gives us the pdf of the logistic distribution.

• If we want to calculate the cumulative probability that a
variable distributed according to the logistic distribution is less
than some value, ε, then we use the cumulative density
function (cdf):

Λ(ε) =

∫ ε

−∞
λ(ε)dε =

exp(ε)

1 + exp(ε)
(4)
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The logistic pdf and cdf

−4 −2 0 2 4

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

D
en

si
ty

Logistic pdf

−4 −2 0 2 4
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

D
en

si
ty

Logistic cdf

8 / 36



Introduction The binary response model Interpretation Estimation Conclusion

Specifying the logit model

• Assuming ε is distributed according to the standard logistic
distribution, we can rewrite Equation (2):

Pr(Yi = 1) ≡ Λ(Xiβ) =
exp(Xiβ)

1 + exp(Xiβ)
. (5)

• To extract a probabilistic statement from Equation (5), we
need to think about events in terms of likelihood.
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Deriving the log-likelihood function for logit

Li =

(
exp(Xiβ)

1 + exp(Xiβ)

)Yi
[
1−
(

exp(Xiβ)

1 + exp(Xiβ)

)]1−Yi

(6)

L =
N∏
i=1

(
exp(Xiβ)

1 + exp(Xiβ)

)Yi
[
1−
(

exp(Xiβ)

1 + exp(Xiβ)

)]1−Yi

(7)

lnL =

N∑
i=1

Yiln

(
exp(Xiβ)

1 + exp(Xiβ)

)
+ (1− Yi)ln

[
1−
(

exp(Xiβ)

1 + exp(Xiβ)

)]
(8)

• We then maximize the log-likelihood with respect to β̂s to obtain our
MLEs.
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Probit

• If we assume that εi is distributed standard normally (i.e.,
εi ∼ N(0, 1)), then we estimate a probit rather than a logit.

• Recall that the pdf of a standard normal distribution is:

Pr(ε) ≡ φ(ε) =
1√
2π

exp

(
−ε2

2

)
(9)

• The cdf for the standard normal is given by:

Φ(ε) =

∫ ε

−∞

1√
2π

exp

(
−ε2

2

)
dε. (10)
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Deriving the log-likelihood function for the probit

Pr(Yi = 1) = Φ(Xiβ)

=

∫ Xiβ

−∞

1√
2π

exp

(
−Xiβ

2

2

)
dXiβ (11)

• The standard normal may be a better specification for ε.

• But unlike the standard logistic cdf, we can’t calculate the
integral via a closed-form solution.

• Hence, we must use approximation methods.

• Also, we can’t extract probabilities so easily as we did in logit.
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Comparing logit and probit

• Each is single-peaked and symmetric.

• But logit has fatter tails than does probit.

• Logit coefficients are about 1.7 times larger than probit
coefficients.

• But this turns out not to really matter.
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Comparing logit and probit pdfs
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Predicting election day winners

• Suppose we’re interested in modeling why some candidates for
office win and some lose.

• We therefore estimate the following logistic regression:

Pr(Winneri = 1) = Λ(β0 + β1Moneyi + β2Incumbenti +

β3Nonwhitei + β4Femalei),

where Moneyi measures a candidates campaign fundraising in
millions, Incumbenti is a dummy variable for whether the
candidate is an incumbent, and Nonwhitei and Femalei are
dummy variables indicating nonwhite and female candidates,
respectively.
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What do we make of our logit/probit results?

16 / 36



Introduction The binary response model Interpretation Estimation Conclusion

Interpreting probit and logit results

• “Signs and significance” (not great but better than nothing)

• Marginal effects (e.g., standardize the IVs or β̂s)

• Predicted probabilities (but over what range?)
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Xk’s nonlinear effect on Yi

• Recall that the estimated effect of some Xk on the DV (β̂k) is
linear only with respect to the latent variable, Y ∗i .

• Hence, we cannot interpret β̂k as a linear effect on Ŷi.

• The real net effect of Xk is also a function of the other
variables, their coefficient estimates, and the constant:

∂Pr(Ŷi = 1)

∂Xk
≡ λ(X) =

exp(Xiβ̂)

[1 + exp(Xiβ̂)]2
β̂k. (12)

• Unlike in OLS, then, the first derivative of the function with
respect to β̂k is non-constant.
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Predicted Probabilities

• Generically, we can estimate the change in predicting a “1”
across two values of Xk:

∆Pr(Yi = 1)XA→XB
=

exp(XBβ̂)

1 + exp(XBβ̂)
− exp(XAβ̂)

1 + exp(XAβ̂)
,(13)

for logits, and

∆Pr(Yi = 1)XA→XB
= Φ(XBβ̂)− Φ(XAβ̂), (14)

for probits.
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Predicted probabilities: Example

• Suppose I want to know the change in the predicted
probability a candidate wins if they raise no money, versus if
they raise $1 million, versus if they raise $2 million.

• To isolate this effect, I’ll hold the other IVs equal to zero
(hence, this means a non-incumbent who is a white man).
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Predicted probabilities: Example (cont’d.)

Pr(Yi = 1 | Xi) = Λ(−1.16 + 0.48Moneyi)

Someone raising no money will win with probability:

Pr(Yi = 1) = Λ(−1.16) =
exp(−1.16)

1 + exp(−1.16)
= 0.24.

The same person who raises $1 million is predicted to win with
probability:

Pr(Yi = 1) = Λ(−1.16 + .48) =
exp(−.68)

1 + exp(−.68)
= 0.34.

And for $2 million:

Pr(Yi = 1) = Λ(−1.16 + .96) =
exp(−.2)

1 + exp(−.2)
= 0.45.
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Graphing the probability function
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Estimation in Stata

• The basic syntax for estimating a logit/probit model in Stata
is:
• logit/probit depvar [indepvars] [if] [in] [weight]

[,options]

• if is used to estimate for a subset of the data based on user
defined conditions

• in is similar to if but defines a range of observations for
which estimation is limited

• A variety of options exists with logit models (see the Stata
help file for a full list), the most common relate to how the
standard errors are calculated (e.g. robust for Huber-White
robust standard errors, cluster(groupname) for clustered
standard errors, etc.)
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Interpreting β̂k using Stata

• One of my preferred means of interpreting partial slope
coefficients is using Stata’s “margins” command.

• “Margins” is extremely flexible. It can provide you with
marginal, standardized effects for X on Y . It can report
predicted probabilities. It even comes with its own graphing
environment. How awesome is that?
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Adjusted predictions at the mean

. margins nonwhite, atmeans

Adjusted predictions Number of obs = 668

Model VCE : OIM

------------------------------------------------------------------------------

| Delta-method

| Margin Std. Err. z P>|z| [95\% Conf. Interval]

-------------+----------------------------------------------------------------

nonwhite |

0 | .7386119 .0266587 27.71 0.000 .6863618 .7908621

1 | .4916167 .0769071 6.39 0.000 .3408815 .6423519

------------------------------------------------------------------------------

• This tells us that nonwhites are 24.7 percentage points less likely to win election
compared to whites when holding all other variables at their means.

• But the mean of Female is 0.28. What does that mean?

25 / 36



Introduction The binary response model Interpretation Estimation Conclusion

Average marginal effects

. margins, dydx(nonwhite)

Average marginal effects Number of obs = 668

Model VCE : OIM

Expression : Pr(winner), predict()

dy/dx w.r.t. : 1.nonwhite

------------------------------------------------------------------------------

| Delta-method

| dy/dx Std. Err. z P>|z| [95\% Conf. Interval]

-------------+----------------------------------------------------------------

1.nonwhite | -.1334723 .0406578 -3.28 0.001 -.2131602 -.0537844

------------------------------------------------------------------------------

Note: dy/dx for factor levels is the discrete change from the base level.

• Average marginal effect works like this: Go to i = 1. Treat them as if they were
white. Compute the probability they win.

• Now do the same as if they were nonwhite. Take the difference in probabilities.

• Repeat for every other case in N and take the mean.
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Adjusted predictions at representative values
. margins, at(cm_justice_million=(0, .91))

Predictive margins Number of obs = 668

Model VCE : OIM

Expression : Pr(winner), predict()

1._at : cm_justice~n = 0

2._at : cm_justice~n = .91

------------------------------------------------------------------------------

| Delta-method

| Margin Std. Err. z P>|z| [95\% Conf. Interval]

-------------+----------------------------------------------------------------

_at |

1 | .5916008 .0165606 35.72 0.000 .5591427 .6240589

2 | .6482608 .0187586 34.56 0.000 .6114946 .6850271

------------------------------------------------------------------------------

Get a plot for the whole range:
quietly margins, at(cm justice million=(0(.5)5))

marginsplot
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Adjusted predictions for continuous variable
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Using margins to interpret interaction effects

• Suppose I think that when incumbents versus challengers raise
vast sums of money, these events have different ramifications
for the likelihood a candidate wins.

• Therefore, I reestimate the previous model, but this time, I
interact Incumbent with Money (Incumbenti ×Moneyi).

• Unlike in OLS, in MLE, we can’t just multiply variables across
one another. See code below.
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Logit with an interaction effect

margins incumbent, at(cm justice million=(0(.25)2))

marginsplot
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Plotted interaction effect
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Using Stata’s “predict” commands

• If you want in-sample predictions, then the predict command
is likely the way to go (useful for calculating proportion
accurately predicted).

• Problem is, in-sample predictions can get a little ugly.

logit winner cm_justice_million incumbent nonwhite female

predict phat

predict sehat, stdp

predict xbeta, index
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Out of sample predictions using Stata

• We can simulate data to create clean graphs for our variables
of interest.

• Create a toy dataset that allows Moneyi to vary from its min
to max, and hold all other variables appropriately constant
(mean for continuous variables, median else).
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Out-of-sample graph
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Presenting results tabularly

Table: Electoral outcomes for state judges (2002-2014)

Variable β̂k σ̂β̂k ∆Pr(Yi = 1)

Money 1.19* 0.25 0.19→0.41
Incumbent 4.67* 0.35 0.19→0.96
Money × Incumbent -2.55* 0.43 0.96→0.87
Nonwhite -0.94* 0.36 063→0.52
Female 0.43 0.25 n.s.
Constant -1.49* 0.18 —

Log-Likelihood = −254.61

Notes: The dependent variable is whether a candi-
date won their election (“1” if yes, “0” else). As-
terisks indicate statistical significance (p < 0.05,
two-tailed). ∆Pr(Yi) denotes the change in pre-
dicted probability (shift from min. to max for di-
chotomous variables, x̄ − σ to x̄ + σ otherwise).
N = 668.
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Conclusion

• By now you should be prepared to estimate, interpret, and
present binary response models such as logit and probit.

• Next time, we’ll discuss goodness of fit and model
specification.

• Remember that Homework 1 is due one week from today.
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