Introduction
o]

The binary response model Interpretation Estimation Conclusion
00000000000 00000000 0000000000000 o]

Binary Logit and Probit

David A. Hughes, Ph.D.

Auburn University at Montgomery

david.hughes@aum.edu

February 7, 2020

1/36



Introduction The binary response model Interpretation Estimation Conclusion
o] 00000000000 00000000 0000000000000 o]

Overview

@ Introduction

@ The binary response model
© |Interpretation

O Estimation

@ Conclusion

2/36



Introduction he binary response model Interpretation Estimation Conclusion

Introduction

By the time students finish this unit, they should be able to
explain:

® The binary response model from a latent model perspective,
® The logic underlying logit and probit,
® How to interpret logit and probit results, and

® How to estimate and present these effects.
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Review

® Suppose our dependent variable is measured such that
Y; € {0,1}.

® Recall that the linear probability model violates a number of
desirable assumptions of OLS.

e \We'd like instead to model the actual probability of observing
either a “0" or "1."
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A latent variable approach

® Suppose there exists an underlying measure of Y; that is
measured on a continuous scale. Call this latent variable Y;*.
The underlying model is therefore,

Y =Xif + €, (1)

where € is distributed according to some normal distribution.

® We do not observe Y;* directly but merely its manifestations
in Y; such that:

Y, = 0ifY*<0
Y, = 1ifY*>0.

5/36



Introduction The binary response model Interpretation Estimation
[e] 00000000000 00000000 0000000000000

A latent approach (cont'd.)

® Taking Equation (1), we can model the probability of
observing Y; = 1:

where the last inequality holds due to the symmetry of the

distribution of e.

Conclusion
o]

(2)

® Because € is assumed normally distributed, we can integrate

over it to find ,5’
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If we assume that € is distributed according to a logistic
probability density function, we get the logit model:

exp(e€) (3)

Pr(e) = \e) = TTexOF

Equation (3) gives us the pdf of the logistic distribution.

If we want to calculate the cumulative probability that a
variable distributed according to the logistic distribution is less
than some value, €, then we use the cumulative density
function (cdf):
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The logistic pdf and cdf
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Specifying the logit model

® Assuming e is distributed according to the standard logistic
distribution, we can rewrite Equation (2):
exp(X;f)
PrY;,=1)=AXif) = —————. 5
T( ? ) ( 16) 1—|—eXp(X1ﬁ) ( )
® To extract a probabilistic statement from Equation (5), we
need to think about events in terms of likelihood.
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Deriving the log-likelihood function for logit

InL ZYZ (%) —|—(1—Yi)ln{1— (%)}(8)

® We then maximize the log-likelihood with respect to Bs to obtain our
MLEs.
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Probit

® |f we assume that ¢; is distributed standard normally (i.e.,
€; ~ N(0,1)), then we estimate a probit rather than a logit.

® Recall that the pdf of a standard normal distribution is:

Pr)= 61 = e ) ©)

® The cdf for the standard normal is given by:

B(e) = /; 127Texp(_262>de. (10)
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Deriving the log-likelihood function for the probit

Pr(Y;=1) = ®(X;)

X;p 1 . (_Xiﬁ2
= X
oo V2T P 2

)dXi/B (11)

The standard normal may be a better specification for .

But unlike the standard logistic cdf, we can't calculate the
integral via a closed-form solution.

® Hence, we must use approximation methods.

® Also, we can't extract probabilities so easily as we did in logit.
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Comparing logit and probit

Each is single-peaked and symmetric.

But logit has fatter tails than does probit.

Logit coefficients are about 1.7 times larger than probit
coefficients.

But this turns out not to really matter.
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Comparing logit and probit pdfs
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Predicting election day winners

® Suppose we're interested in modeling why some candidates for
office win and some lose.

® We therefore estimate the following logistic regression:

Pr(Winner; =1) = A(By + $1Money; + Bz2lncumbent; +
BsNonwhite; + B4Female;),

where Money, measures a candidates campaign fundraising in
millions, Incumbent; is a dummy variable for whether the
candidate is an incumbent, and Nonwhite; and Female; are
dummy variables indicating nonwhite and female candidates,
respectively.
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What do we make of our logit/probit results?
logit winner cm_justice million incumbent nonwhite female
Iteration O: log likelihood = -444.63745
Iteration 1: log likelihood = -282.03634
Iteration 2: log likelihood = -274.42329
Iteration 3: log likelihood = -274.29387
Iteration 4: log likelihood = -274.29368
Iteration 5: log likelihood = -274.29368
Logistic regression Humber of obs 668
LR chiz(4) = 340.69
Prob > chiz = 0.0000
Log likelihood = -274.29368 Pseudo R2 = 0.3831
winner Coef. S5td. Err. z P>|z| [95% Conf. Interval]
cm_justice million .4805724 .1854172 2.59 0.010 -1171613 .8439834
incumbent 3.682391 2611491 14.10 0.000 3.170549 4.194234
nonwhite -1.072303 .3432889 -3.12 0.002 -1.745137 —-.3994688
female 5514401 . 2426576 2.27 0.023 .0758401 1.02704
_cons -1.159442 1667965 -6.95 0.000 -1.486357 -. 8325266
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Interpreting probit and logit results

e “Signs and significance” (not great but better than nothing)
e Marginal effects (e.g., standardize the IVs or fs)
® Predicted probabilities (but over what range?)
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X}.'s nonlinear effect on Y;

® Recall that the estimated effect of some X}, on the DV () is
linear only with respect to the latent variable, Y;*.

® Hence, we cannot interpret 3 as a linear effect on Y;.

® The real net effect of X}, is also a function of the other
variables, their coefficient estimates, and the constant:

oPr(Yi=1) _ o exp(Xif)
—ox O e W

® Unlike in OLS, then, the first derivative of the function with
respect to i is non-constant.
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Predicted Probabilities

® Generically, we can estimate the change in predicting a “1”
across two values of Xj:

exp(XBf)  exp(Xaf)
1+exp(XpfB) 1+ exp(Xah)

APr(Yi =1)x,»xp = ,(13)

for logits, and
APr(Yi = 1)x, x5 = ®(Xpf) — ®(Xah), (14)

for probits.
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Predicted probabilities: Example

® Suppose | want to know the change in the predicted
probability a candidate wins if they raise no money, versus if
they raise $1 million, versus if they raise $2 million.

® To isolate this effect, I'll hold the other IVs equal to zero
(hence, this means a non-incumbent who is a white man).
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Predicted probabilities: Example (cont'd.)

Pr(Y;=1|X;) = A(—1.16 4 0.48Money;)
Someone raising no money will win with probability:
—-1.1
Pr(Yi = 1) = A(—1.16) = — =PI o)

1+ exp(—1.16)

The same person who raises $1 million is predicted to win with
probability:

exp(—.68)
Pr(Y;=1)=A(-1.1 A8) = ————— =0.34.
r( ) ( 6+.48) 1 + exp(—.68) 03
And for $2 million:
exp(—.2)
Pr(Y;,=1)=A(-1.1 . = ———— =0.45.
r( )= A(-LI6+.96) = =0 s = 045
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Graphing the probability function
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Estimation in Stata

The basic syntax for estimating a logit/probit model in Stata
is:

® logit/probit depvar [indepvars] [if] [in] [weight]

[,options]

if is used to estimate for a subset of the data based on user
defined conditions
in is similar to if but defines a range of observations for
which estimation is limited

A variety of options exists with logit models (see the Stata
help file for a full list), the most common relate to how the
standard errors are calculated (e.g. robust for Huber-White
robust standard errors, cluster (groupname) for clustered
standard errors, etc.)
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Interpreting Bk using Stata

® One of my preferred means of interpreting partial slope
coefficients is using Stata's “margins” command.

® “Margins” is extremely flexible. It can provide you with
marginal, standardized effects for X on Y. It can report

predicted probabilities. It even comes with its own graphing

environment. How awesome is that?

Conclusion

o]
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Adjusted predictions at the mean

. margins nonwhite, atmeans

Adjusted predictions Number of obs = 668
Model VCE : 0IM

| Delta-method

| Margin  Std. Err. z P>|z| [95\% Conf. Interval]
nonwhite |
0 | .7386119 .0266587 27.71 0.000 .6863618 .7908621
1| .4916167 .0769071 6.39 0.000 .3408815 .6423519

® This tells us that nonwhites are 24.7 percentage points less likely to win election
compared to whites when holding all other variables at their means.

® But the mean of Female is 0.28. What does that mean?
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. margins, dydx(nonwhite)

Average marginal effects
Model VCE : 0IM

Expression
dy/dx w.r.t.

: Pr(winner), predict()
1.nonwhite

Estimation Conclusion
0008000000000 o
Number of obs = 668

| Delta-method
| dy/dx  Std. Err. z

P>|z]| [95\% Conf. Intervall

1.nonwhite | -.1334723 .0406578 -3.28

0.001 -.2131602 -.0537844

Note: dy/dx for factor levels is the discrete change from the base level.

® Average marginal effect works like this: Go to i = 1. Treat them as if they were

white. Compute the probability they win.

® Now do the same as if they were nonwhite. Take the difference in probabilities.

® Repeat for every other case in N and take the mean.
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Adjusted predictions at representative values

. margins, at(cm_justice_million=(0, .91))

Predictive margins Number of obs = 668
Model VCE : 0IM

Expression : Pr(winner), predict()

1._at : cm_justice™n = 0

2._at : cm_justice™n = .91

Delta-method

|
| Margin  Std. Err. z P>|z| [95\% Conf. Intervall
_at |
1 .5916008 .0165606 35.72  0.000 .5591427 .6240589
2 | .6482608 .0187586 34.56  0.000 .6114946 .6850271

Get a plot for the whole range:
quietly margins, at(cm_justicemillion=(0(.5)5))
marginsplot
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Using margins to interpret interaction effects

® Suppose | think that when incumbents versus challengers raise
vast sums of money, these events have different ramifications
for the likelihood a candidate wins.

® Therefore, | reestimate the previous model, but this time, |
interact Incumbent with Money (Incumbent; x Money;).

® Unlike in OLS, in MLE, we can’t just multiply variables across
one another. See code below.
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interaction effect

Logistic regression Number of obs = 668
LR chiZ(5) = 380.06
Prok > chi2 = 0.0000
Log likelihood = -254.60769% Pseudo R2 0.4274
winner Coef. Std. Erx. z P>1z] [95% Conf. Interval]
cm_justice million 1.1891 .25194135 4.72 0.000 . 6953037 1.682896
1.incumbent 4.665217 .3466478 13.46 0.000 3.9858 5.344635
incumbent#c.com_justice_million
1 —-2.553493 .4344857 -5.88 0.000 -3.405069 -1.701916
nonwhite -.9382109 .3573678 -2.63 0.00% -1.638639 -.237782%
female .431282 .251886 1.71 0.087 —.0624056 - 9249696
_cons —1.458338 .1846199 -7.%0 0.000 -1.820187 -1.09649

margins incumbent,
marginsplot

at(cm_justicemillion=(0(.25)2))

Conclusion

[e]
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Plotted interaction effect

Probability candidate wins election
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Using Stata’s “predict” commands

® |f you want in-sample predictions, then the predict command
is likely the way to go (useful for calculating proportion
accurately predicted).

® Problem is, in-sample predictions can get a little ugly.

logit winner cm_justice_million incumbent nonwhite female
predict phat

predict sehat, stdp
predict xbeta, index
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Out of sample predictions using Stata

® \We can simulate data to create clean graphs for our variables
of interest.

® Create a toy dataset that allows Money, to vary from its min
to max, and hold all other variables appropriately constant
(mean for continuous variables, median else).
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Presenting results tabularly

Table: Electoral outcomes for state judges (2002-2014)

Variable B 65 APr(Y;=1)
Money 1.19* 0.25 0.19—0.41
Incumbent 467 035 0.19—0.96
Money x Incumbent -2.55*% 0.43  0.96—0.87
Nonwhite -0.94* 0.36 063—0.52
Female 043 0.25 n.s.
Constant -1.49*% 0.18 —

Log-Likelihood = —254.61

Notes: The dependent variable is whether a candi-
date won their election (“1" if yes, “0" else). As-
terisks indicate statistical significance (p < 0.05,
two-tailed). APr(Y;) denotes the change in pre-
dicted probability (shift from min. to max for di-
chotomous variables, Z — o to Z + o otherwise).

Conclusion
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Conclusion

® By now you should be prepared to estimate, interpret, and
present binary response models such as logit and probit.

® Next time, we'll discuss goodness of fit and model
specification.

® Remember that Homework 1 is due one week from today.

36/36



	Introduction
	The binary response model
	Interpretation
	Estimation
	Conclusion

