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Introduction

By the time students finish this unit, they should be able to
explain:
® The difference between probability density and mass functions,

® The types of distributions we oftentimes deal with with
categorical dependent variables, and

® The logic underpinning maximum likelihood inference.
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What are density functions?

® Probability mass functions (PMFs) are useful with discrete
data and describe the probability an outcome is equal to some
precise value.
® Suppose that z; € {1,2,...,k}.
® Then Zle Pr(z;) =1.
® Probability density functions (PDFs) are useful with
continuous data and describe the probability of some volume
of outcomes.

® Suppose you have a function, f(-) defined across x € (a, b).
Then: Pr{z € (a,b)} = f; flx)dz =1.

® For a normal distribution, then, a = —oc0 and b = oc.

Note: Pr(x; = k) =0.
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Why do | care about these distributions?

® For one thing, they can tell us something about the likelihood
of an eventuality.

® When we engage in hypothesis testing, it is critical that we
select appropriate distributions that can help us to measure
the relative likelihood of having observed a given dataset.

® Qur choice of distribution will largely come down to our level
of measurement.

5/29



Introduction
[e]

Distributions and Density Functions Uncertainty and inference Maximum Likelihood Conclusion
008000000 000 0000000000000 o

Bernoulli Distribution (discrete)

This is the simplest statistical distribution

Represents the situation where a random variable x; has only
two possible event outcomes, each with a non-zero probability
of occurrence

Example: flipping a coin
Pr(zi=1)=mand Pr(z; =0)=1—m.

Formally, we represent the distribution:

Lq ~ fBern($i|7T) = 7733(1_“)(1—30)
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Binomial Distribution (discrete)
® This is a series of N Bernoulli random variables, where we
only observe the sum of the observations

® The distribution is nonnegative and discrete (no fractions),
with an upper bound of n

® Examples: the number of bills in a legislature, number of
cases on a court’s docket

® Mathematical specification:
n _
fk,n,p = (k)pk(l _p)(n 2

® where:
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Normal Distribution

® Most intuitively familiar distribution (pdf froms the familiar
“bell-shaped” curve)

® Used in OLS regression models

® Somewhat difficult to employ in MLE, because it does not
possess an analytic solution

® Analytic solution requires computing integrals
® Computationally, the mathematics underlying this distribution
were too complex for early computers

® Mathematical specification:

) {(%5)2}
yiNN(inM,a)zTe 7
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Logistic Distribution

® Better adept at modeling probabilities for dichotomous
outcomes than the Normal distribution

Contains an analytic solution (e.g. is mathematical tractable)

® Low computational costs (can even be done by hand)

Mathematical specification:

e
Yi ~ fLogistic(yi‘X/B) = W

X3
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Poisson Distribution

Used when dependent variable is a count with no upper bound

e Key assumption: Occurrence of one event has no influence on
the expected number of subsequent events ()

Mathematical specification:

Ay
e \Yi
Yi ~ fPoisson(yi|/\) = ]

7.

where A > 0 and y; =0,1,2,...
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Negative Binomial Distribution

® Two key assumptions about the Poisson distribution are often
problematic:
® That events accumulating during observation period ¢ are

independent
® Events have a constant rate of occurrence

® |f either assumption is violated, then a new distribution is
required because X is no longer constant for all observations
® |nstead, must assume that A itself varies across observations
according to a particular probability distribution
® The most popular distribution for A is the gamma distribution
® This involves calculating another parameter in the equation —
the variance of the distribution
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Negative Binomial Distribution

® Mathematical specification:

I (Uz% + yz) 2_1 Y
Ui ~ Fup(yiA0?) = — (" )yz-<a2>021

yill (725)

® where A > 0 and o2 > 0.

® Note: the more events within observation ¢ that are positively
related, the larger 02 becomes. Also, as o approaches 0, the

negative binomial distribution collapses into the Poisson
distribution
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Uncertainty and inference

® We use probability all the time to better understand our own
uncertainty over events.

® We like to use probability to summarize the relative likelihood
of an occurrence. For example, what's the probability | flip 10
heads in a row using a fair coin?

® We can think about probability as being either relative or
subjective. Phenomena might be infinitely repeatable. But do
we have the same concept in mind when we say Donald
Trump has a 0.5 probability of winning reelection in 20207
This gets tricky.
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Inverse probability

® Uncertainty is not the same as inference. We might want to
know Pr(y | M) such that y is our data and M represents
the statistical model that describes the relationship among our
data.

® |deally, we might like to reverse this conditional probability
and estimate the probability of a certain model, taking our
data as a given.

® |t turns out, this is actually not possible. We therefore turn to
concepts such as likelihood or Bayes' Theorem to calculate
relative uncertainty.
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Likelihood as a model of inference

To try and get at Pr(M | y), we will make use of the concept
of likelihood.

Suppose that 6 represents the hypothetical parameter value
for the data.

Then: . . .
L(0 [ y) = k(y)Pr(y | 0) o< Pr(y | 0), (1)
where k(y) is treated as an unknown, positive constant.

This scaling parameter allows us to think about relative
uncertainty and to calculate summary estimates of 6.
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Intuition of maximum likelihood

e Consider a model such that Y; ~ N(u,0?) where E(Y) = p
and Var(Y) = o2.

® Suppose you have some data on Y, and you want to estimate
p and o2 from these data.

® The whole idea behind likelihood is to find the estimates of
the parameters that maximize the probability of having
observed these data.
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An example

® Suppose Y is a sample of cars and their estimated fuel
efficiency (in MPG): Y = {30, 25, 35, 15,45}.

® Intuitively, how likely is it that these five data points were
drawn from a normal distributin with p = 507

® What about p = 30, which happens to be the empirical mean
of Y7

® Maximium likelihood is a way of doing this.

17/29



Introduction Distributions and Density Functions Uncertainty and inference Maximum Likelihood Conclusion
o] 000000000 000 0000000000000 o]

Example continued

® \We can think of the MPG observations as having been draws
from a normal distribution’s PDF:

(V. _ ;)2
Privi =)= m%"[ o )]’

which is the probability that, for any one observation, 7, Y will
take on the particular value y.

® \We can think about the probability of a single realization
being what it is, e.g.:

1 —(30 — p)?
Pr(Y; =30) = Wexp{ (202 1) ]
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Example continued

® |f we assume that the observations in Y are independent, then
we can consider the joint probability of the observations as
simply the product of marginals.

® Recall that Pr(a,b) = Pr(a) x Pr(b).

® Therefore:

—(30—M)2] 1 exp[—(%—u)r"}

1
Pr(Y1 =30,Y2 =25) = \/ﬁexp{ 9557
To
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The likelihood function

® We can generalize the previous example to include N marginal
probabilities:

N i 2
Pr(Y; = y;Vi) = H 21 2exp[ (%202#) )] . (2
i=1 V4To

® This product is generally known as the Likelihood [L(Y')] and
is the probability each observation is what it is, given the
parameters.
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Estimation of the likelihood function

Obviously, we don't know the paramaters as they are the very
things we're kind of interested in.

What we'd like to figure out is which values of ; and o2 were
most likely to have generated Y in the first place.

It turns out that L(j1,62% | Y) oc Pr(Y | i1,62).

Essentially, we're looking for parameters that maximize the
likelihood of generating the function.
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The mechanics of maximum likelihood

We could take the brute force approach and just start
plugging in values for i and o2 and see what gives us the
biggest likelihood.

For example, suppose | chose ;1 = 40 and 02 = 1.

Then: L = (7.7 x 1072) x (5.5 x 107°%) x ..., which is a
crazy small number.

Holding 02 = 1, we could find out what value of 1 maximizes
the likelihood function.
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Maximizing the likelihood function

® Turns out, the empirical mean is the answer to our problem.

likelihood
5.0e-112 1.0e-111 1.5e-111 2.0e-111 2.5e-111

0.0e+00
I

26 28 30 32 34

mu
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Problems with the likelihood function

® Dealing with products can get tricky, especially when we're
getting such teensy-tiny joint probabilities.

® Early computers really couldn’t handle this (though that’s not
so much of a problem anymore).

® Therefore, we often take the natural log of the likelihood
function, producing what we call the log-likelihood.
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The log-likelihood function

® To calculate log-likelihood, we simply take the natural log of
both sides of Equation 2.

InL(f,6%|Y) =

lnHmexp[ e ;2@2)]

- (e )
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Visualizing the log-likelihood function

® Assuming once again that o2 = 1, we get:

log-likelihood
-500 -400 -300

-600

-700

15 20 25 30 35 40 45

mu
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Maximizing the log-likelihood function

® Generally, eye-balling graphs won't be sufficient to find
maxima.

® We turn to differential calculus to find these points.

® Taking the derivative of the log-likelihood equation above
with respect to 1 and o2 gives:

N
olnL 1
ou - o2 Z(YZ B

=1

OlnL = 1 iv:
do2 2a2 2 —~
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Maximizing the log-likelihood function (continued)

® Setting the previous two
for the unknowns gives:

expressions equal to zero and solving

which are simply the formulas for mean and variance.

® That is, our estimates of {i and 02 are the maximum
likelihood estimates for 1 and o?.

Conclusion
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Conclusion

We'd like to be able to estimate the likelihood of having
observed some parameters of interest given our data.

This problem of inverse probability turns out to be intractable,
however.

The concept of likelihood helps us to address the problem of
relative uncertainty.

And maximum likelihood inference tells us which parameters
are most likely to summarize the relationships in our data,
given that data.

Next time, we'll discuss MLE with respect to regression
analysis and some of the properties of these estimates.
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