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Introduction

By the time students finish this unit, they should be able to
explain:

• The difference between probability density and mass functions,

• The types of distributions we oftentimes deal with with
categorical dependent variables, and

• The logic underpinning maximum likelihood inference.
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What are density functions?

• Probability mass functions (PMFs) are useful with discrete
data and describe the probability an outcome is equal to some
precise value.
• Suppose that xi ∈ {1, 2, . . . , k}.
• Then

∑k
i=1 Pr(xi) = 1.

• Probability density functions (PDFs) are useful with
continuous data and describe the probability of some volume
of outcomes.
• Suppose you have a function, f(·) defined across x ∈ (a, b).
• Then: Pr{x ∈ (a, b)} =

∫ b

a
f(x)dx = 1.

• For a normal distribution, then, a = −∞ and b =∞.
• Note: Pr(xi = k) = 0.
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Why do I care about these distributions?

• For one thing, they can tell us something about the likelihood
of an eventuality.

• When we engage in hypothesis testing, it is critical that we
select appropriate distributions that can help us to measure
the relative likelihood of having observed a given dataset.

• Our choice of distribution will largely come down to our level
of measurement.
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Bernoulli Distribution (discrete)

• This is the simplest statistical distribution

• Represents the situation where a random variable xi has only
two possible event outcomes, each with a non-zero probability
of occurrence

• Example: flipping a coin

• Pr(xi = 1) = π and Pr(xi = 0) = 1− π.

• Formally, we represent the distribution:

xi ∼ fBern(xi|π) = πx(1−π)(1−x)
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Binomial Distribution (discrete)

• This is a series of N Bernoulli random variables, where we
only observe the sum of the observations

• The distribution is nonnegative and discrete (no fractions),
with an upper bound of n

• Examples: the number of bills in a legislature, number of
cases on a court’s docket

• Mathematical specification:

fk,n,p =

(
n

k

)
pk(1− p)(n−k)

• where: (
n

k

)
=

n!

k!(n− k)!
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Normal Distribution

• Most intuitively familiar distribution (pdf froms the familiar
“bell-shaped” curve)

• Used in OLS regression models

• Somewhat difficult to employ in MLE, because it does not
possess an analytic solution
• Analytic solution requires computing integrals
• Computationally, the mathematics underlying this distribution

were too complex for early computers

• Mathematical specification:

yi ∼ N (yi|µ, σ2) =
1√

2πσ2
e
− 1

2

[
(y−µ)2

σ2

]
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Logistic Distribution

• Better adept at modeling probabilities for dichotomous
outcomes than the Normal distribution

• Contains an analytic solution (e.g. is mathematical tractable)

• Low computational costs (can even be done by hand)

• Mathematical specification:

yi ∼ fLogistic(yi|Xβ) =
eXβ

1 + eXβ
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Poisson Distribution

• Used when dependent variable is a count with no upper bound

• Key assumption: Occurrence of one event has no influence on
the expected number of subsequent events (λ)

• Mathematical specification:

yi ∼ fPoisson(yi|λ) =
e−λλyi

yi!

• where λ > 0 and yi = 0, 1, 2, . . .
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Negative Binomial Distribution

• Two key assumptions about the Poisson distribution are often
problematic:
• That events accumulating during observation period i are

independent
• Events have a constant rate of occurrence

• If either assumption is violated, then a new distribution is
required because λ is no longer constant for all observations
• Instead, must assume that λ itself varies across observations

according to a particular probability distribution
• The most popular distribution for λ is the gamma distribution
• This involves calculating another parameter in the equation —

the variance of the distribution
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Negative Binomial Distribution

• Mathematical specification:

yi ∼ fnb(yi|λ, σ2) =
Γ
(

λ
σ2−1

+ yi

)
yi!Γ

(
λ

σ2−1

) (
σ2 − 1

σ2

)
yi(σ

2)
−λ
σ2−1

• where λ > 0 and σ2 > 0.

• Note: the more events within observation i that are positively
related, the larger σ2 becomes. Also, as σ2 approaches 0, the
negative binomial distribution collapses into the Poisson
distribution
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Uncertainty and inference

• We use probability all the time to better understand our own
uncertainty over events.

• We like to use probability to summarize the relative likelihood
of an occurrence. For example, what’s the probability I flip 10
heads in a row using a fair coin?

• We can think about probability as being either relative or
subjective. Phenomena might be infinitely repeatable. But do
we have the same concept in mind when we say Donald
Trump has a 0.5 probability of winning reelection in 2020?
This gets tricky.
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Inverse probability

• Uncertainty is not the same as inference. We might want to
know Pr(y | M) such that y is our data and M represents
the statistical model that describes the relationship among our
data.

• Ideally, we might like to reverse this conditional probability
and estimate the probability of a certain model, taking our
data as a given.

• It turns out, this is actually not possible. We therefore turn to
concepts such as likelihood or Bayes’ Theorem to calculate
relative uncertainty.
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Likelihood as a model of inference

• To try and get at Pr(M | y), we will make use of the concept
of likelihood.

• Suppose that θ̃ represents the hypothetical parameter value
for the data.

• Then:
L(θ̃ | y) = k(y)Pr(y | θ̃) ∝ Pr(y | θ̃), (1)

where k(y) is treated as an unknown, positive constant.

• This scaling parameter allows us to think about relative
uncertainty and to calculate summary estimates of θ.
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Intuition of maximum likelihood

• Consider a model such that Yi ∼ N(µ, σ2) where E(Y ) = µ
and V ar(Y ) = σ2.

• Suppose you have some data on Y , and you want to estimate
µ and σ2 from these data.

• The whole idea behind likelihood is to find the estimates of
the parameters that maximize the probability of having
observed these data.
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An example

• Suppose Y is a sample of cars and their estimated fuel
efficiency (in MPG): Y = {30, 25, 35, 15, 45}.
• Intuitively, how likely is it that these five data points were

drawn from a normal distributin with µ = 50?

• What about µ = 30, which happens to be the empirical mean
of Y ?

• Maximium likelihood is a way of doing this.
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Example continued

• We can think of the MPG observations as having been draws
from a normal distribution’s PDF:

Pr(Yi = yi) =
1√

2πσ2
exp

[
−(Yi − µ)2)

2σ2

]
,

which is the probability that, for any one observation, i, Y will
take on the particular value y.

• We can think about the probability of a single realization
being what it is, e.g.:

Pr(Y1 = 30) =
1√

2πσ2
exp

[
−(30− µ)2

2σ2

]
.
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Example continued

• If we assume that the observations in Y are independent, then
we can consider the joint probability of the observations as
simply the product of marginals.

• Recall that Pr(a, b) = Pr(a)× Pr(b).
• Therefore:

Pr(Y1 = 30, Y2 = 25) =
1√
2πσ2

exp

[
−(30− µ)2

2σ2

]
× 1√

2πσ2
exp

[
−(25− µ)2

2σ2

]
.
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The likelihood function

• We can generalize the previous example to include N marginal
probabilities:

Pr(Yi = yi∀i) ≡
N∏
i=1

1√
2πσ2

exp

[
−(yi − µ)2)

2σ2

]
. (2)

• This product is generally known as the Likelihood [L(Y )] and
is the probability each observation is what it is, given the
parameters.
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Estimation of the likelihood function

• Obviously, we don’t know the paramaters as they are the very
things we’re kind of interested in.

• What we’d like to figure out is which values of µ and σ2 were
most likely to have generated Y in the first place.

• It turns out that L(µ̂, σ̂2 | Y ) ∝ Pr(Y | µ̂, σ̂2).

• Essentially, we’re looking for parameters that maximize the
likelihood of generating the function.
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The mechanics of maximum likelihood

• We could take the brute force approach and just start
plugging in values for µ and σ2 and see what gives us the
biggest likelihood.

• For example, suppose I chose µ = 40 and σ2 = 1.

• Then: L = (7.7× 10−23)× (5.5× 10−50)× . . ., which is a
crazy small number.

• Holding σ2 = 1, we could find out what value of µ maximizes
the likelihood function.
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Maximizing the likelihood function

• Turns out, the empirical mean is the answer to our problem.
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Problems with the likelihood function

• Dealing with products can get tricky, especially when we’re
getting such teensy-tiny joint probabilities.

• Early computers really couldn’t handle this (though that’s not
so much of a problem anymore).

• Therefore, we often take the natural log of the likelihood
function, producing what we call the log-likelihood.
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The log-likelihood function

• To calculate log-likelihood, we simply take the natural log of
both sides of Equation 2.

lnL(µ̂, σ̂2 | Y ) = ln

N∏
i=1

1√
2πσ2

exp

[
−(yi − µ)2)

2σ2

]

=

N∑
i=1

ln

{
1√

2πσ2
exp

[
−(yi − µ)2)

2σ2

]}

=
−N

2
ln(2π)−

[ N∑
i=1

1

2
lnσ2 − 1

2σ2
(Yi − µ)2

]
.
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Visualizing the log-likelihood function

• Assuming once again that σ2 = 1, we get:
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Maximizing the log-likelihood function

• Generally, eye-balling graphs won’t be sufficient to find
maxima.

• We turn to differential calculus to find these points.

• Taking the derivative of the log-likelihood equation above
with respect to µ and σ2 gives:

∂lnL

∂µ
=

1

σ2

N∑
i=1

(Yi − µ),

∂lnL

∂σ2
=
−N
2σ2

+
1

2
σ4

N∑
i=1

(Yi − µ)2.
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Maximizing the log-likelihood function (continued)

• Setting the previous two expressions equal to zero and solving
for the unknowns gives:

µ̂ =
1

N

N∑
i=1

Yi,

σ̂2 =
1

N
σNi=1(Yi − Ȳ )2,

which are simply the formulas for mean and variance.

• That is, our estimates of µ̂ and σ̂2 are the maximum
likelihood estimates for µ and σ2.
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Conclusion

• We’d like to be able to estimate the likelihood of having
observed some parameters of interest given our data.

• This problem of inverse probability turns out to be intractable,
however.

• The concept of likelihood helps us to address the problem of
relative uncertainty.

• And maximum likelihood inference tells us which parameters
are most likely to summarize the relationships in our data,
given that data.

• Next time, we’ll discuss MLE with respect to regression
analysis and some of the properties of these estimates.
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