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The Classic Linear Regression Model

• Assume the following equation to be true for the population:

Yi = β1 + β2X2i + . . .+ βkXki + εi (1)

• Which we can rewrite as a series of equations:

Y1 = β1 + β2X21 + β3X31 + . . .+ βkXk1 + ε1

Y2 = β1 + β2X22 + β3X32 + . . .+ βkXk2 + ε2

Yn = β1 + β2X2n + β3X3n + . . .+ βkXkn + εn

(2)
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The Classic Regression Model

• Looking at equation [2], we can see that really all we have
here is a matrix:


Y1
Y2
. . .
Yn

 =


1 X21 X31 . . . Xk1

1 X22 X32 . . . Xk2

. . . . . . . . . . . . . . .
1 X2n X3n . . . Xkn



β1
β2
. . .
βn

+


ε1
ε2
. . .
εn


(3)

• Therefore, with no alternative in meaning, we can rewrite
equation [1] using matrix notation (note the bold-face type):

y = Xβ + ε (4)
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Assumptions of the CLRM

1. Linearity
• The CLRM is linear in the parameters (not necessarily linear in

the variables).

2. No Perfect Multicollinearity
• X is an n x k matrix of rank K
• This means that all columns in X are linearly independent and

there are at least K observations
• There can be no exact linear relationships between two or more

variables
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Assumptions of the CLRM

3. No endogeneity among data and error term (i.e., E[εi|X] = 0)

• The disturbance term should have a conditional expected
value of 0 at every observation.

• We can write this as:

E[ε|X] =


E[ε1|X]
E[ε2|X]

...
E[εn|X]

 = 0 (5)

• Equation [5] therefore implies:

E[y|X] = Xβ, (6)

which is the linear predictor.
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Assumptions of the CLRM

4. Homoskedasticity and Non-autocorrelation

• Var[εi|X] = σ2, for all i = 1, . . . , n,

• Cov[εi, εj |X] = 0, for all i 6= j

• This tells us that residuals in the CLRM possess consistent
variance and that they are uncorrelated across observations
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Assumptions of the CLRM
• These assumptions imply that the variance covariance matrix

of disturbance terms simplify as follows:

E[εε′|X] =


E[ε1ε1|X] E[ε1ε2|X] . . . E[ε1εn|X]
E[ε2ε1|X] E[ε2ε2|X] . . . E[ε2εn|X]

...
...

...
...

E[εnε1|X] E[εnε2|X] . . . E[εnεn|X]



=


σ2 0 . . . 0
0 σ2 . . . 0

...
0 0 . . . σ2


• Which we neatly summarize as:

E[εε′|X] = σ2I, (7)

such that I is the “identity matrix.”
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Assumptions of the CLRM

5. Nonstochastic Regressors
• X must be generated by some means unrelated to ε.

6. Normality

• The residuals are normally distributed.

• Formally, we state:

ε|X ∼ N [0, σ2I] (8)
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OLS is BLUE

• If all of the above assumptions are met, then OLS is the Best
Linear Unbiased Estimator (BLUE) we can utilize to estimate
the population parameters β and ε from equation [4].

• We will denote the statistics we estimate as b and e
respectively.

• Where:

b = (X′X)−1X′y (9)
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b is an Unbiased Estimator of β

b = (X′X)−1X′y (10)

= (X′X)−1X′(Xβ + ε)

= (X′X)−1X′Xβ + (X′X)−1X′ε

= β + (X′X)−1X′ε

• Because we are interested is the expected value of b over
repeated samples, we take the expected value of b over
repeated iterations of X:

E[b|X] = β + E[(X′X)−1X′ε|X] (11)
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b is an Unbiased Estimator of β

• Since E[ε|X] = 0 (by assumption), then:

E[b|X] = β (12)

• Or, averaged over all possible values of X

E[b] = β (13)
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b is a Consistant Estimator of β

b = (X′X)−1X′y (14)

• Since y = Xβ + ε:

b = (X′X)−1X′(Xβ + ε) (15)

= (X′X)−1X′Xβ + (X′X)−1X′ε

= β + (X′X)−1X′ε
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b is a Consistant Estimator of β

• Taking expected value:

E[b− β] = (X′X)−1X′E[ε|X] (16)

• Since E[ε|X] = 0 (by assumption):

E[b− β] = 0

E[b] = β (17)
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b is an Efficient Estimator of β

• In addition to Unbiasedness and Consistency, the least squares
estimator is also the minimum variance, or most efficient of all
unbiased linear estimators

• This can be shown via the Gauss-Markov Theorem

• Moreover, it holds even if X is stochastic, so long as all other
assumptions are met

15 / 24



Introduction Gauss-Markov Assumptions Desirable Qualities of OLS When Gauss-Markov is violated Conclusion

Violations of the Gauss-Markov Theorem

• When our data exhibit endogeneity, heteroskedasticity,
autocorrelation, etc., the assumptions of Gauss-Markov are
violated.

• This means that either our β̂s or σ̂β̂s are biased/inefficient.

• Oftentimes, we can perform a work-around by transforming
variables, calculating robust standard errors, etc. But this
won’t always be the case.
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Gauss-Markov and categorical dependent variables

• Categorical and limited dependent variables pose a grave risk
both to the Gauss-Markov assumptions and our interpretation
of OLS results.

• On the one hand, we’re almost certainly violating assumptions
of homoskedasticity, normality, etc., which means that we’re
either getting biased or inefficient results.

• On the other hand, interpreting the values of β̂k can be
downright weird.
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The linear probability model

• Suppose we code judges’ votes on the US Courts of Appeals
as being either liberal or conservative (“libvote=1” if yes, “0”
else)

• Now suppose we want to predict the likelihood a judge casts a
liberal vote solely as a function of his or her ideology.

• We’ll let the ideal point of a judge’s appointing president
stand in for their own (“potus ideal ∈ [−1, 1]”) such that
increasing values represent greater conservatism.

• Imagine we estimated the following linear regression:

ˆlibvotei = β̂0 + β̂1potus ideali.
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The linear probability model: An example

. reg libvote potus_ideal

. predict yhat2

. predict res, res

Source | SS df MS Number of obs = 42,156

-------------+---------------------------------- F(1, 42154) = 287.99

Model | 68.2337579 1 68.2337579 Prob > F = 0.0000

Residual | 9987.62816 42,154 .23693192 R-squared = 0.0068

-------------+---------------------------------- Adj R-squared = 0.0068

Total | 10055.8619 42,155 .238544939 Root MSE = .48676

------------------------------------------------------------------------------

libvote | Coef. Std. Err. t P>|t| [95\% Conf. Interval]

-------------+----------------------------------------------------------------

potus_ideal | -.0838547 .0049413 -16.97 0.000 -.0935397 -.0741696

_cons | .3978374 .0023882 166.59 0.000 .3931565 .4025184

------------------------------------------------------------------------------
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Do we have homoskedasticity?

. estat hettest

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity

Ho: Constant variance

Variables: fitted values of potus_ideal

chi2(1) = 7.48

Prob > chi2 = 0.0062

No.
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Do we have normally distributed errors?

. swilk res

Shapiro-Wilk W test for normal data

Variable | Obs W V z Prob>z

-------------+------------------------------------------------------

res | 42,156 0.70748 4745.478 23.407 0.00000

Note: The normal approximation to the sampling distribution of W’

is valid for 4<=n<=2000

. kdensity res, normal

No.
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Do we have normally distributed errors? (Visually)

0
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Residuals

Kernel density estimate
Normal density

kernel = epanechnikov, bandwidth = 0.0521

Kernel density estimate
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Interpreting the LPM

• Suppose we came up with a LPM that adhered to all of the
Gauss-Markov asssumptions.

• We still have a problem insofar as we don’t really know how
to interpret model parameters like slope coefficients.

• All of these problems tell us that OLS is not the appropriate
estimator.
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Discussion

• OLS is the workhorse of regression analysis, but there are
numerous scenarios under which it is an inappropriate
regression technique.

• The remainder of this course will focus upon the likelihood
theory of inference, the conditions under which it is an
appropriate estimation technique, and the conditions under
which its own assumptions are violated.

24 / 24


	Introduction
	Gauss-Markov Assumptions
	Desirable Qualities of OLS
	When Gauss-Markov is violated
	Conclusion

